
Infestation of grain is a serious problem in marketing
channels, causing big losses and health hazards. A
variety of factors affect wheat value. One of these
factors is the presence of live insects. Manis (1992)

described the sampling, inspecting and grading process.
According to current U.S. grain standards, the special

grade designation of “infested” is given when “The
representative sample (other than shiplots) contains two or
more live weevils, or one live weevil and one or more other
live insects injurious to stored grain, or two or more live
insects injurious to stored grain”, (Official U.S. Standards
for Grain, 7 CFER part 810.107, 1997).

Many different methods are used to sample wheat:
diverter-type mechanical samplers, Ellis cup, pelican, and
the compartmented probe (trier). After the grain sample is
obtained, it is taken to the laboratory and divided into a
work sample, a file sample and a moisture sample. The
work sample is used by the inspector to determine its
grade. The first factors the inspector checks for are odor,
infestation, and other unusual conditions. The whole work
sample is checked visually for live insects. Insects are
separated from the grain with official grain sieves. Insects
and other fine material are collected in a bottom pan when
the grain is shaken over the sieve. Insects are counted and
identified in the grain pan. This can be a laborious
procedure, and often insects are missed due to human error.

A possible method that may be used to detect insects in
grain is acoustic detection (insect movement and feeding
sounds are detected with highly amplified microphones in

grain), reported by (Hagstrum, 1993). Among other
alternative methods reported are nuclear magnetic
resonance spectroscopy (NMR) (Chambers et al., 1984),
near infrared spectroscopy (NIR) (Ridgway and Chambers,
1996) and X-radiation (Schatzki and Keagy, 1991; Keagy
and Schatzki, 1993).

Machine vision is a rapidly developing technique.
Pattern recognition methodology in combination with
machine vision is utilized in many areas of industry and
agriculture for control and inspection purposes. Some
research has been done on the use of imaging techniques
for descriptive morphometry of individual insects, such as
termites (Grace et al., 1986), bees (Batra, 1988) and
mosquitoes (Zhou et al., 1985), but no studies on bulk
samples have been reported. Imaging techniques, using
photomultipliers and pattern recognition techniques were
used for recognition of several insects, prevailing in a
cotton field (Atmar et al., 1973). The study looked at
individual objects in the field of view and obtained a
recognition rate of approximately 85%.

There is no published research on detection of insects in
the bulk grain, using digital imaging technique. Machine
vision with pattern recognition technique is an attractive
approach for grain quality inspection. It is an objective
method, it may exclude the tedious and laborious process
of grain inspection for presence of insects. Successfully
developed algorithm may give insects count, a picture of
detected insects for visual confirmation and archiving of
samples if needed.

OBJECTIVES

The objective of the study was to explore a possibility of
developing a method to detect whole insects or body parts
in the bulk samples of grain and dockage, using machine
vision. The main goal of the study was to determine x,y
coordinates of a subimage, belonging to insect versus non-
insect elements of the image. The search for x,y
coordinates was based on multispectral measurements,
extracted from Red, Green and Blue images for the same
sample. Subimages were used instead of individual pixels,
to reduce computational time. A goal for image processing
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algorithm development was to determine, what subimage
size should be used to efficiently run a program, to reduce
amount of information to process. Accuracy of determining
insect body boundaries was another challenging goal,
considering different angles of insects or insect parts
position in a sample and subimage size. The similarity in
color of insects to some components of the dockage made
the task more difficult. An objective was to develop
effectively working algorithm despite clinging particles of
dust, which obscure insect tissue and change multispectral
response.

MATERIAL
Grain samples used in this study came from a field study

reported by Flinn et al. (1996). They were sievings from
hard red winter wheat that had become infested with
several species of stored product insects. Bins were
infested with Rhyzopertha dominica (lesser grain borer),
Cryptolestes ferrugineus (rusty grain beetle),
Cephalonomia waterstoni (parasitoid wasp), and
Choetospila elegans (parasitoid wasp). However, other
species, Oryzephilus surinamensis (sawtoothed grain
beetle) and Triboleum castaneum (red flour beetle) were
also found in the grain. The predominant species was the
lesser grain borer, (Rhyzopertha dominica).

A pneumatic grain sampler (Probe-A-Vac, Cargill,
Minneapolis, Minn.) was used to obtain grain samples from
a 35.2 m3 bin of hard red winter wheat. Samples were
obtained using a vacuum probe from different locations in
a bin. Samples were a blend of wheat kernels and dockage,
including some grass seeds. The 3 kg samples were passed
over an inclined sieve (89 × 43 cm, 1.6 mm aperture) to
separate whole grain from dockage and insects. Some
wheat kernels were added back to sieved material before
image acquisition to determine, if wheat could be
distinguished from insect parts.

IMAGE ACQUISITION
EQUIPMENT

Kontron (Kontron Electronic Gmbh) hardware and
software were used for image acquisition. IBAS 2.5
software was installed on a 486 DX 33 MHz DOS
computer, with 16 Mb of memory. Data processing and
data visualization were done using a 75 MHz SPARC LX
workstation. Images were obtained with a Progress 3000
color camera mount on a Bencher photostand.

A Progress 3000 color camera was calibrated to 1488 ×
1180 pixels, one of the six possible calibrations. The
chosen calibration was used to acquire images in a 512 ×
512 pixel format, with a pixel aspect ratio of 1.06. The field
of view was 5.4 mm × 5.3 mm. Calibration values were
scale x: 1.05 × 10–2 mm = 1 pixel; y: 1.03 × 10–2 mm = 1
pixel. Samples were placed in a crate cell, as shown in
figure 1. The depth of the sample was approximately 5 mm
and the bottom of the crate cell was completely covered.
Color calibration of Progress camera is a part of calibration
procedure, a program supplied by manufacturing company
Kontron. Color calibration procedure is programmed for
sampling white and black pixels. Samples were prepared in
a manner, that one or more insects should be present in the
field of view. Samples were shaken to expose insects. Some

dockage components, such as grass seeds, were difficult to
differentiate from insects, because of similarity of color
and shininess. The position of the insect (ventral, dorsal,
side) and particles clinging to the insect affected
recognition success. The best quality image, considering
the problems mentioned above, was achieved with
backlight illumination, one halogen lamp 250 W. To reduce
reflection, a dome with flat matte white paint inside was
placed over the sample. The Progress 3000 camera was
placed above the dome with a Nikkor 50 mm lens inside
the dome. Images of seventy samples were stored for future
analysis.

DATA ANALYSIS AND RESULTS
A block diagram, illustrating the data processing

sequence, is shown in figure 2. Red, Green, Blue, hue,
saturation and lightness features were extracted from
histograms for each of the subimages (8 × 8 pixels). Thirty
features from subimage histograms included the mean,
standard deviation, skewness, kurtosis, and several derived
features. Five derived features were: (red mean/green
mean), (red mean/blue mean), (blue standard deviation/
green standard deviation), (red standard deviation/green
standard deviation), and squared (green standard
deviation/red standard deviation) (table 1).

Multivariate analysis was used to classify observations,
which were subimages of insects, grass seeds and others
for two and three class categorization. Discriminant
analysis was run using a program written inhouse,
Zayas et al., (1996) and SAS procedure (SAS, 1991) for
verification of discriminant analysis results. In the training
and testing steps, the program computed the probability of
each subimage belonging to a certain class. The results
were presented as percent of correctly identified
subimages, with x,y coordinates of subimage location
stored. For two-class analysis, categorized observations
were insect versus non-insect subimages. For three-class,
categorized observations were subimages from insects,
grass seeds, and others elements of an image. Grass seeds
were chosen from other components of the dockage,
because they were very close in color to insects. “Others”
included all kinds of dockage and shaded areas in between
objects in the field of view.

Observations for training and testing were selected in
two different ways. In the first approach, training and
testing data sets were created by interactive selection of
representative subimages from three classes: insects
(3932), grass seeds (2432), and others (2244). The pool of
subimages was randomly divided in half for training and
test data sets for each class. Discriminant and canonical
analysis procedures of the SAS statistical package (SAS,
1991) and an inhouse written program were run to compute
linear and quadratic functions with different features
models. Discriminant analysis was also run in conjunction
with canonical analysis; canonical functions were
computed first, and the results were used as an input for the
calculation of discriminant functions.

The STEPDISC procedure of SAS was used to choose
the number of features in the model and the best
performing features. This procedure ranks the features by
R2. The output of the procedure shows the value of the
Average Squared Canonical Correlation (ASCC). Lack of
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significant changes in the values of the ASCC shows, that
adding features to the model does not improve performance
of the model (table 2). Comparison of the performance of
different features models was done using Linear
Discriminant Analysis for two-class and three-class
categorization. The results are given in the bar plots in
figure 3. Table 2 shows that no drastic changes occur in the
ASCC after the fifth feature, but figure 3 shows, that only
starting from the 20 features model, recognition of insects
and other classes reached a higher rate of approximately
92% for insects. The output of STEPDISC shows overall
estimation for all classes and STEPDISC may be
considered a helpful tool, but not a reliable tool for
classification decision. The best performance for two-class
categorization was achieved with the 35 features model,
with a correct recognition rate of 91.3% for insects and
96.3% for others for an average of 93.8% (table 3 and
fig. 3). The best performance for three-class categorization
was achieved with the 25 features model, with a correct
recognition rate of 91.3% for insects, 91.2% for others, and
94.7% for seeds for an average of 92.4%. For further
testing, models with 20 features or more and higher were
chosen.

Linear, Quadratic, and Canonical discriminant analysis
methods were tested for better performance. Results of
analysis for test data set for the three-class categorization

with different numbers of features in a model, and different
multivariate analysis methods are displayed in table 3. The
best results were achieved when Canonical and
Discriminant analysis was run with Quadratic functions
computed with a 35 features model (average 92.6%, 90.3%
insects, 93.1% others, and 94.6% grass seeds). Slightly
worse results were achieved for test data, when
Discriminant Linear Functions were computed with the 25
features model (average 92.4%, 91.3% insects, 91.2%
others, and 94.7% grass seeds).

The best results for the test data set for two-class
categorization were achieved when Canonical and
Discriminant analysis with Quadratic functions were
computed with the 35 features model (average 94.4%,
92.5% insects, and 96.3% others). Canonical plots were
created to visualize the performance of canonical analysis.
Figure 4 shows the results of categorization by two
canonical functions for three-class (insects, dark grass
seeds, and others) and two-class discrimination (insects and
non-insects). Clustering of the observations into three
groups and two groups with some overlap may be observed
on these plots.

The second approach to verify algorithm performance
used binarization of images (fig. 5). Binarization of the
acquired subimages was used to verify visually, which parts
of the image were identified correctly as a certain class. The
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Figure 1–Block diagram of data processing.
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output of discriminant functions was a data set with each
subimage assigned to a certain class. Each subimage carried
information about x,y coordinates of the subimage location.
The recognition algorithm allowed comparison of a binary
image with the original gray scale image. The program
assigned subimage pixels belonging to insects to “1” (white),
and the rest of the image to “0” (black), to produce binary
images. MATLAB (MATLAB, 1993) software was used for
data visualization to display images for verification.
Subimages of 8 × 8 pixels were chosen for final analysis and
binarization. The 35 features model performed reasonably
well, although further refining of the algorithm was needed
to reduce noise for better insect discrimination from the rest
of the image. In some cases, it was difficult to verify
binarized images with incomplete insect bodies. Insect body
parts such as open wings, head or leg were difficult to verify
in binary images. Differentiation of insects from wheat did
not pose a problem.

CONCLUSION
The application of machine vision for finding insects in

sieved grain samples was studied. Multispectral
information from histograms of Red, Green and Blue, hue,
saturation and lightness images, for 8 × 8 pixels subimages,
was used as an input to multivariate statistical analysis to
locate subimages belonging to insects or non-insects
components of the samples. The developed algorithm for
two-class discrimination of subimages: insect versus non-
insect showed the best performance when Canonical and
Discriminant analysis was run with Quadratic functions
computed, using 35 features model. For three-class
discrimination of subimages, the same algorithm and
35 features model produced satisfactory results for
discriminating insect parts from the wheat and dockage.
Grass seeds similar in color to insects were components of
the dockage. Despite the fact that some elements of
dockage such as dark grass seeds, were difficult to
discriminate from insects, insects were discriminated
reasonably well. It was difficult to discriminate separate
insect body parts from other classes. Position of the insects
(ventral, dorsal, side), and particles clinging to the insect,
affected recognition success of the insects versus the rest of
the sample components. Particles of dust clinging to the
surface of the insects made recognition of insects more
difficult. Some separate insect body parts were present in
the image in various angular positions among dockage
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Figure 2–Sketch of experiments scene.

TRAIN (collected interactively)
* 3 classes
* 160 subimages (obs.) per class

TEST   
* 3 classes (collected interactively)
* all 70 images  (286,720 obs.)

Discrimination of Subimages
Identification of Insects, Grass Seeds, Other
(Binarized Data)

SPARC LX

Data visualization
(binarized images)

MATLAB

Histogram Variables Extracted from R,G,B,H,L,S Images
Mean, Median, Stddev, Skewness, Kurtosis
Subimage Size (8x8)

IBAS/KONTRON

Table 1. Variables (35) used for identification of insect tissue (8 × 8 subimage)

Histogram Statistics of Subimage Derived
Red, Green, Blue, Hue, Lightness, Saturation Variable Definition*

MEDIAN - Median A RMEAN / GMEAN
MEAN - Mean B RMEAN / BMEAN
STDDEV - Standard

Deviation C BSTDDEV / GSTDDEV
SKEWNESS - Skewness D RSTDDEV / GSTDDEV
KURTOSIS - Kurtosis M_D_D (GSTDDEV / RSTDDEV)2

* R, G, B, are added to related histogram statistics terms.



particles, which made visual verification more difficult.
The shiny surface of insects demanded special illumination
settings to avoid blind spots in the image. The choice of
subimages for the training data set affected results of
recognition due to the above mentioned image problems
(amount of dust, position angle, etc). Further image
processing refinement of the algorithm is needed to reduce
noise in images for identification of dead insects and their
body parts.
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Table 2. The SAS System stepwise discriminant analysis

Average Squared
Step Variable* Partial R2 Canonical Correlation

1 B 0.6425 0.3213
2 HMEAN 0.4927 0.5670
3 HSTDDEV 0.3568 0.6495
4 GMEDIAN 0.1421 0.6786
5 M_D_D 0.0921 0.6943
6 RMEDIAN 0.0458 0.7014
7 D 0.0517 0.7098
8 C 0.0494 0.7172
9 HSKEW 0.0294 0.7211
10 SMEAN 0.0250 0.7251
11 A 0.0278 0.7294
12 GSTDDEV 0.0146 0.7315
13 RSTDDEV 0.0225 0.7346
14 LMEAN 0.0164 0.7365
15 BMEAN 0.0644 0.7448
16 GMEAN 0.0943 0.7559
17 HMEDIAN 0.0120 0.7572
18 SSKEW 0.0125 0.7586
19 RMEAN 0.0119 0.7598
20 LSTDDEV 0.0095 0.7608
21 BSTDDEV 0.0096 0.7618
22 BMEDIAN 0.0106 0.7631
23 SKURT 0.0059 0.7639
24 SMEDIAN 0.0053 0.7646
25 LSKEW 0.0051 0.7651
26 BKURT 0.0169 0.7667
27 HKURT 0.0113 0.7678
28 RKURT 0.0103 0.7689
29 GSKEW 0.0034 0.7692
30 BSKEW 0.0017 0.7695
31 SSTDDEV 0.0022 0.7697
32 LKURT 0.0012 0.7698
33 GKURT 0.0028 0.7702
34 LMEDIAN 0.0011 0.7703
35 RSKEW 0.0006 0.7704

* See table 1; features taken from stepdisc output from February 1997
all results from SAS Discrim procedure.

Figure 3–Bar plots of correct recognition rate for two and three classes for 5-35 features models, by Linear Discriminant Analysis.
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Table 3. Results of discriminant analysis (test data)

Three Class* Two Class

Grass
Fea- Insects Others Seeds Insects Others

Procedures† tures‡ (%) (%) (%) Avg (%) (%) Avg

Can & Disc L 20 91.51 89.66 94.82 91.99 89.01 96.32 92.66
Can & Disc Q 20 89.78 92.25 94.41 92.14 90.08 95.21 92.64
Can & Disc L 25 91.00 91.44 95.07 92.50 88.71 96.83 92.77
Can & Disc Q 25 90.28 92.60 94.41 92.43 90.59 95.51 93.05
Can & Disc L 35 91.40 90.73 94.16 92.09 91.10 96.83 93.96
Can & Disc Q 35 90.28 93.05 94.57 92.63 92.52 96.28 94.40
Discrim L 20 91.76 89.84 94.90 92.16 88.86 96.49 92.67
Discrim Q 20 94.10 79.59 96.88 90.19 96.08 83.92 90.00
Discrim L 25 91.30 91.18 94.74 92.40 88.81 96.79 92.80
Discrim Q 25 94.30 79.68 97.12 90.36 95.98 84.77 90.37
Discrim L 35 92.12 90.37 94.33 92.27 91.25 96.32 93.78
Discrim Q 35 93.79 82.53 96.71 91.01 96.19 86.74 91.46

*     Number of observations per class: Three class—Insects, 1966;
Others, 1122; Grass seeds, 1216; Two class—Insects, 1966; Others,
2338.

†     Can = Canonical Analysis; Disc = Discriminant Analysis;Q =
Quadratic; L  = Linear.

‡     20 features: rmedian, rmean, rstddev, gmedian, gmean, gstddev,
bmean, hmedian, hmean, hstddev, hskew, lmean, lstddev, smean,
sskew, a, b, c, d, m_d_d; 25 features: rmedian, rmean, rstddev,
gmedian, gmean, gstddev, bmedian, bmean, bstddev, hmedian,
hmean, hstddev, hskew, lmean, lstddev, lskew, smedian, smean,
sskew, skurt, a, b, c, d, m_d_d.
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Figure 4–Canonical plot for discrimination of insects, grass seeds, others (8 ×× 8 pix), 35 features model, for three and two class categorization.

Figure 5–Finding insects by discriminant functions and image
binarization.


